Modification of a novel angiogenic peptide, AG30, for the development of novel therapeutic agents
نویسندگان
چکیده
We previously identified a novel angiogenic peptide, AG30, with antibacterial effects that could serve as a foundation molecule for the design of wound-healing drugs. Toward clinical application, in this study we have developed a modified version of the AG30 peptide characterized by improved antibacterial and angiogenic action, thus establishing a lead compound for a feasibility study. Because AG30 has an α-helix structure with a number of hydrophobic and cationic amino acids, we designed a modified AG30 peptide by replacing several of the amino acids. The replacement of cationic amino acids (yielding a new molecule, AG30/5C), but not hydrophobic amino acids, increased both the angiogenic and the antimicrobial properties of the peptide. AG30/5C was also effective against methicillin-resistant Staphylococcus aureus (MRSA) and antibiotic-resistant Pseudomonas aeruginosa. In a diabetic mouse wound-healing model, the topical application of AG30/5C accelerated wound healing with increased angiogenesis and attenuated MRSA infection. To facilitate the eventual clinical investigation/application of these compounds, we developed a large-scale procedure for the synthesis of AG30/5C that employed the conventional solution method and met Good Manufacturing Practice guidelines. In the evaluation of stability of this peptide in saline solution, RP-HPLC analysis revealed that AG30/5C was fairly stable under 5°C for 12 months. Therefore, we propose the use of AG30/5C as a wound-healing drug with antibacterial and angiogenic actions.
منابع مشابه
Design and Synthesis of Novel Triazole-based Peptide Analogues as Anticancer Agents
Cancer disease is a great concern in the worldwide public health and current treatments do not give satisfactory results, so, developing novel therapeutic agents to combat cancer is highly demanded. Nowadays, anticancer peptides (ACPs) are becoming promising anticancer drug candidates. This is due to several advantages inherited in peptide molecules, such as being usually with small size, high ...
متن کاملDesign and Synthesis of Novel Triazole-based Peptide Analogues as Anticancer Agents
Cancer disease is a great concern in the worldwide public health and current treatments do not give satisfactory results, so, developing novel therapeutic agents to combat cancer is highly demanded. Nowadays, anticancer peptides (ACPs) are becoming promising anticancer drug candidates. This is due to several advantages inherited in peptide molecules, such as being usually with small size, high ...
متن کاملIdentification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning
Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...
متن کاملIdentification of a Novel Tumor-Binding Peptide for Lung Cancer Through in-vitro Panning
Tumor-targeted therapies are playing growing roles in cancer research. The exploitation of these powerful therapeutic modalities largely depends on the discovery of tumor-targeting ligands. Phage display has proven a promising high throughput screening tool for the identification of novel specific peptides with high binding affinity to cancer cells. In the present study, we describe the use of ...
متن کاملDiscovery of Novel Peptidomimetics for Brain-Derived Neurotrophic Factor using Phage Display Technology
Brain-Derived Neurotrophic Factor (BDNF) is a neuroprotectant candidate for neurodegenerative diseases. However, there are several clinical concerns about its therapeutic applications. In the current study, we selected BDNF-mimicking small peptides from phage-displayed peptide library as alternative molecules to the clinical challenges. The peptide library was screened against BDNF receptor (Ne...
متن کامل